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Introduction

O During the first few Myr of their life young stars are surrounded by accretion
disks rich in gas (~99% by mass) and small dust.

O Accretion processes probe the gas content of the inner <1 AU of the disk.

O Magnetospheric accretion model. Applicable to TTS & HAe(?) stars
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CS disks evolution

From gas-rich protoplanetary to dusty debris disk
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Inner disk clearing ﬁ Accretion and wind decay




Accretion lifetime
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Figure: Briceno et al., 2019
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Figure: Sicilia-Aguilar et al., 2010

General trend is decrease both fraction of accretors and M,.. with age.
But there is significant scatter in M,.. at each given age.
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Accretion lifetime
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General trend in decrease both fraction of accretors and M,.. with age.

But there is significant scatter in M,.. at each given age.
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Rapid disk evolution in dence clusters? Prolonged accretion lifetime in loose
environment?

(Pfalzner et al., 2014)

Fraction of K-type accretors in Sco-Cen subgroups: US (10+3 Myr), UCL
(16£2 Myr), LCC (154£3 Myr) (Pecaut&Mamajek, 2016)

Band/Criteria/Disk Type UsS UCL LCC

EW(Ha) 6/84 (7.1733%) 5/145 (3.4732%) 41119 (3.4123%)

( Some individual long-lived accretors )

O MP Mus, sp:KIVe, 10-20 Myr (Mamajek et al., 2002)
O WISE J0808-6443, sp:M, 40 Myr (Murphy et al., 2018)

O RZ Psc, sp:KO0IV, 20 Myr (Grinin et al., 2010; Potravnov et al, 2019)

Prospects in GAIA era: disclosure low-mass content of OB

associations 4/14



Low accretors

At last stages of active accretion star becomes a "low accretor":
Myee < 1071 Mg, yr=! (Ha surveys detection limit)

Muyind/Mace ~ 0.01 (Hartigan et al., 1995): Low accretion é even lowest wind.

Highlights from studying of low accretors:

@ How the accretion /outflow and their observational tracers decays?
@ Does the MA act with the same efficiency at the all accretion phases?

® Could be any alternative/complementary mechanisms of star-disk

interaction?



The case study: RZ Psc

o High-latitude UXOR, b = —34°
(Grinin et al.,2010)

o sp: KO IV (Herbig, 1964)

o No notable emission-line spectrum
(Herbig, 1964; Grinin et al., 2010)

0 mid-IR
excess (A 2 bum): Lir/Lyo ~ 8%
(de Wit et al., 2013)

o0 Aget= 20f§ Myr; probable member
of Cas-Tau OB ass. (Potravnov et al.,
2019).
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RZ Psc: spectroscopy

From medium resolution spectra: NalD, e
]
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BACs 1n spectra

of young stars

BACs at Nal D are presented in
spectra of several young stars: CTTS
NY Ori & V1118 Ori (Herbig, 2008),
HAe MWC 480 (Kozlova et al., 2003),
FUOR BBW 76 (Reipurth et al.,
2006)

o All of this stars are actively accreting
objects.

oRZ Psc is only exception - low
accretor.
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BACs 1in spectra of young stars

What is their origin?



BACs 1in spectra of young stars

What is their origin?
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Abstract—The origin of the blueshifted narrow absorption components in the resonance sodium doublet
lines observed in the spectra of some young stars is discussed. Such components are assumed to be formed
by the interaction of the circumstellar gas with the stellar magnetosphere in the magnetic propeller regime.
The results of observations for the post UX Ori star RZ Psc are discussed in detail. This star shows
distinctive signatures of mass outflow in the absence of any clear accretion signatures. Such a picture
is quite possible in the magnetic propeller regime. Estimates show that for this regime to be realized, the
star must have a surface magnetic field of ~1 kG at an accretion rate that does not exceed 10710 M, yr—!.




Magnetic propeller effect

Regime of interaction between magnetised star and its disk depends on relation
between the corotation (Rcor) and magnetosphere’s truncation (R, ) radii.

Rip/Re = TABY N3 My 3 TR Reor = (GM,/w?)/3
Magnetospheric accretion (MA) Magnetic propeller (MP)
Matter is accreted onto the star Matter is expelled outward by rotating

magnetosphere

( TTS in MP regime )

O Theory (MHD simulations): Romanova et al., 2004; 2018

O Observations: AA Tau, V2129 Oph and LkCal5 (Donati et al., 2010; 2012; 2019).




BACs formation in MP regime
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Weak propeller simulations
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Figure: Romanova et al., 2018

o Even at low M,.. accreting matter sometimes accumulates in the inner disk
and penetrates the magnetocentrifugal barrier.

o Short-lived accretion "flares" should be observable sometimes.

o Nevertheless, wind dominates in observational statistics of MP regime.



Is RZ Psc accreting object?

Normalized Flux + Constant
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Answer from high-resolution
spectroscopy: yes!
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HIRES spectrum 16.11.2013:

O IPC profile at Ha and IR Call = infall from
RCOT‘ .

O Identical BACs at IR Call and Nal D lines
= wind acceleration from magnetosphere’s
boundary.
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RZ Psc in the deep photometric minimum

Unique high-resolution spectrum of RZ Psc was obtained 13.11.2013 at its
deep UXOR minimum (AV = 1.™4) (Punzi et al., 2018; Potravnov et al,

Ha line appeared in double-peaked emission
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Summary

@ Stars at last stages of active accretion (low accretors) are promising for the
investigation of the mechanisms of star-disk interaction in details.

@ UXOR orientation gives the unique opportunity for spectroscopic probe of
the accretion/outflow even at very low accretion rates.

@Magnetic propeller regime is realised in young stars and could play the
important role at the latest stages of accretion activity.

@ BACs at Nal D and IR Call lines could be important observational tracers
of MP regime.
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