UXors - St Petersburg - September 2019

RESOLVING THE FU ORIONIS SYSTEM WITH ALMA

#ALMA #FUOri #Continuum #Kinematics #EpisodicAccretion Sebastián Pérez - U. Santiago de Chile

Collabs: Antonio Hales (NRAO/ALMA), H. Baobab Liu (ASIAA), Lucas Cieza (UDP), Alice Zurlo (UDP), Simon Casassus (UChile), Zhaohuan Zhu (Nevada), David Principe (MIT), Nicolas Cuello (PUC)

UNIVERSIDAD DE SANTIAGO DE CHILE

100

. . . .

- - L

Optical view of Orion (Hα in red)

Rogelio Bernal Andreo (DeepSkyColors.com)

Betelgeuse

Bellatrix

Rogelio Bernal Andreo (DeepSkyColors.com)

Infrared view of Orion (WISE)

Barnard 35

Infrared view of Orion (WISE)

Barnard 35

|--|

LDN 1594

LBN 879

FU Ori

Background image: Jim Thommes

magnitudes

16

9

Outburst in 1937.

FU Ori light curve

Active ever since.

Adapted from Hartmann 2009.

_

80 years

magnitudes

16

9

Outburst in 1937.

FU Ori light curve

Active ever since.

Adapted from Hartmann 2009.

•••

80 years

Dr Dorrit Hoffleit

FIG. 2. The photographic light curve of FU Ori at the time of the flare-up; the observations are almost entirely by Miss HOFFLEIT (1939). Ringed points are of higher weight; the points with vertical lines are of lower weight.

Herbig (1966)

FU Ori light curve

Active ever since.

Adapted from Hartmann 2009.

80 years

937.

Dr Dorrit Hoffleit

FIG. 2. The photographic light curve of FU Ori at the time of the flare-up; the observations are almost entirely by Miss HOFFLEIT (1939). Ringed points are of higher weight; the points with vertical lines are of lower weight.

Herbig (1966)

MOST light curve. Siwak et al. (2013)

Adapted from Hartmann 2009.

80 years

937.

FU Ori light curve

Background image: Jim Thommes

2007: FU Ori is realized as a binary system (3.6m Calar Alto telescope \\ AO+laser)

Wang et al. 2007

1 FU Ori N 2 FU Ori S

3 **PSF** companion

Early Science ALMA observations. 0.8 mm images shows dust around both stars

Antonio Hales NRAO/ALMA Hales et al. 2015

Liu, H. B. et al. 2017/2019

H. Baobab Liu ASIAA Taiwan

Motivation for ALMA observations:

1) measure disk sizes / geometry 2) probe kinematics for interaction/encounter

Cycle 4 ALMA observations. 1.3 mm images. Resolved twin disks at 40 mas resolution Pérez, Hales, Liu et al. submitted

Cycle 4 ALMA observations. 1.3 mm images. **Resolved** twin disks at 40 mas resolution Pérez, Hales, Liu et al. submitted

measure disk sizes / geometry
probe kinematics for interaction/encounter

Motivation for ALMA observations:

X

X

SPHERE IRDIS polarized H (Principe et al. in prep)

Arc like structure Looks out of plane

Bands/stripes?

SPHERE IRDIS polarized H (Principe et al. in prep)

Shadows

ALMA 12CO kinematics	0.6	SPHERE IRI	DIS polariz
or here scattered (polarized)	0.4		
e G	0.2		
/ arcs	0.0		
δ	-0.2		
	-0.4		~ ~
	-0.6		
		0.50	0.25

	0.6
$\Delta\delta$ / arcsec	0.4
	0.2
	0.0
	-0.2
	-0.4
	-0.6

	0.6
$\Delta\delta$ / arcsec	0.4
	0.2
	0.0
	-0.2
	-0.4
	-0.6

	0.6
$\Delta\delta$ / arcsec	0.4
	0.2
	0.0
	-0.2
	-0.4
	-0.6

	0.6
$\Delta\delta$ / arcsec	0.4
	0.2
	0.0
	-0.2
	-0.4
	-0.6

	0.6
Δ <i>D</i> / arcsec	0.4
	0.2
	0.0
	-0.2
	-0.4
	-0.6

	0.6
$\Delta\delta$ / arcsec	0.4
	0.2
	0.0
	-0.2
	-0.4
	-0.6

	0.6
	0.4
ec	0.2
/ arcs	0.0
Δδ	-0.2
	-0.4
	-0.6

	0.6
Δ0 / arcsec	0.4
	0.2
	0.0
	-0.2
	-0.4
	-0.6

5 0.00 -0.25 -0.50 Δα / arcsec

	0.6
Δð / arcsec	0.4
	0.2
	0.0
	-0.2
	-0.4
	-0.6

0.25 0.00 -0.25 -0.50 Δα / arcsec

 $\Delta\delta$ / arcsec -0.2 -0.4

0.25 0.00 -0.25 -0.50 $\Delta \alpha$ / arcsec

	0.6
$\Delta\delta$ / arcsec	0.4
	0.2
	0.0
	-0.2
	-0.4
	-0.6

 $\Delta \alpha / \text{arcsec}$

	0.6
	0.4
ec	0.2
/ arcs	0.0
$\Delta \delta$	-0.2
	-0.4
	-0.6

	0.6
	0.4
ec	0.2
/ arcs	0.0
Δδ	-0.2
	-0.4
	-0.6

	0.6
	0.4
ec	0.2
/ arcs	0.0
$\Delta \delta$	-0.2
	-0.4
	-0.6

	0.6
	0.4
ec	0.2
/ arcs	0.0
$\Delta \delta$	-0.2
	-0.4
	-0.6

	0.6
	0.4
ec	0.2
/ arcs	0.0
Δδ	-0.2
	-0.4
	-0.6

	0.6
	0.4
ec	0.2
/ arcs	0.0
$\Delta \delta$	-0.2
	-0.4
	-0.6

	0.6
	0.4
ec	0.2
/ arcs	0.0
$\Delta \delta$	-0.2
	-0.4
	-0.6

Cycle 4 ALMA observations. 12CO kinematics (Pérez S. et al. submitted) // SPHERE scattered (polarized) light (Principe et al. in prep)

Phantom SPH simulation

helps explaining small sizes of the dust disks

> but who's the trigger? (E. Vorobyov's talk)

Simulations by Nicolas Cuello (see Cuello et al. 2019)

-4 -3 -2 -1 log column density [g/cm ²]

Scattered light predictions from SPH simulation (phantom+mcfost)

Explains out of plane structure

helps explaining small sizes of the dust disks

but who's the trigger? (E. Vorobyov's talk)

12CO kinematic predictions from SPH simulation (phantom+mcfost)

Declination [Arcsec]

Right Ascension [Arcsec]

beam

Scattered light prediction of cloudlet capture (Dullemond et al. 2019)

Dullemond et al. (2019): Cloudlet capture? "Rejuvenated" disk

ALMA + scattered light's FU Ori picture

SPHERE IRDIS polarized H (Principe et al. in prep)

0

0

0

10 km/s

Спасибо

At 1.3 mm, dust disks are ~10 au in radius and share similar orientations

~Keplerian rotation around both component

Out of plane arm/structure suggests non-coplanar encounter.

Cloudlet capture situation could work too. FU Ori gets 'fed' and disk is 'rejuvenated'.

Interaction could potentially trigger outbursting mechanisms (E. Vorobyov's talk)

> Collaborators: Antonio Hales (NRAO/ALMA), H. Baobab Liu (ASIAA), Lucas Cieza (UDP), Alice Zurlo (UDP), Simon Casassus (UChile), Zhaohuan Zhu (Nevada), David Principe (MIT), Nicolas Cuello (PUC)

