Photometric activity of the EXORs type stars in the near infrared wavelengths

Arkady A. Arkharov¹, Valery M. Larionov^{1,2}, Natalia V. Efimova¹, Sergey A. Klimanov¹

(on behalf of a team of Italian astronomers)

Abstract

1) Central Astronomical Observatory at Pulkovo, St. Petersburg, Russia; 2) Astronomical Institute of St. Petersburg University, Russia

2. Project

A study of the relationship between the observed IR characteristics of EXors type variables and the mechanisms operating during their typical evolutionary phase pre-main sequence is presented. The results were obtained mainly from observations in the near infrared region of the spectrum on the telescope AZT-24 in Italy in conjunction with astronomers of the Roman astronomical Observatory. We analyze the data obtained during long monitoring program EXORCISM and published data. The photometric and spectral variability of a number of objects agrees well with the assumption of the role of disk accretion as the main driver of the variability of **EXors.**

EXors EXors are pre-main sequence eruptive star showing intermittent outbursts (Δ mag about 4 5) of short duration (months) superposed o longer (years) quiescence periods. Thes bursts, usually detected in the optical and near-IR bands, are related to disk accretio events in which there is a sudden increase

	Classical EX	ors (as defined by He	erbia 1989)	
	1.7	11.7 – 15.0	1.5	а
VY Tau	0.7	9.0 – 15.3	0.8	b
DR Tau	1.0 - 5.0	10.5 – 16.0	1.7 – 2.0	С
V1118 Ori	1.4 - 25	12.8 – 17.5	0 - 2	d
NY Ori		14.5 – 17.5	0.3	е
V1143 Ori		13 - 19		f
EX Lup	0.7	8.4 – 13.2	0	g
PV Cep	100	14.6 – 18.0	5 - 7	h
Recently	identified (and	d more embedded) c	andidate EXor	S
V1180 Cas	0.07	15.7 - >21	4.3	А
V512 Per		15.9 – 19.0	6 - 15	В
LDN1415		14.7 – 18.4		С
V2775 Ori	1.9 - 22	11.8 – 16.4	18	D
V1647 Ori	5.2, 2.8-44	14.4 – 20.3	9 - 19	Е
GM Cha	1.5	10.6 – 12.7	13	F
OO Ser	4.5 - 26/36	11.4 – 16.1	42	G
V2492 Cyg	20	14.7 – 18/19	6 - 12	н
V2493 Cyg	2.7 - 12	13.6 – 17.0	3.4	I
GM Cep	30/40	12.4 - 14.6	2 - 4	J

EXORCISM is a systematic monitoring project we have just started, based on photometric and **spectroscopic observations** at optical and near-IR wavelengths, with the aim to:

 \rightarrow trace photometric variations (monthly basis) \rightarrow prompt detection of any possible outburst

 \rightarrow trace **spectroscopic variations** (yearly basis, more often in case of outburst)

The goals of this part of the program are:

- → modelling of the magnetospheric region and inner/outer disk structure both in quiescence and outburst \rightarrow trace structure variations
- → study outburst **trigger mechanism**

3. Facilities

Systematic monitoring

> AZT24 1m – Campo Imperatore (Italy): JHK Imaging + spectroscopy (R ~ 250)

the mass accretion rate by orders of magnitud (e.g. Hartmann & Kenyon 1985). No detailed analysis or modeling of EXor inne disk structure is available, so the mechanisr regulating the outbursts is basically no **known**. Reasons are:

multi-waveleng lack of long-term monitoring programs of photometric an spectroscopic properties;

ii) only a few studies were able to compar photometry and/or spectroscopy of the outburs and quiescence phase (e.g. Lorenzetti+ 2009 Sipos+ 2009, Audard+ 2010, Sicilia-Aguilar-2012, Juhasz+ 2012);

iii) absence of high angular resolutio observations able to spatially resolve the inne disk of the sources.

- > TNG (Telescopio Nazionale Galileo) 3.6m Canary Islands: BVRIJHK Imaging + spectroscopy (R ~ 1500)
- > REM (Robotic Telescope) 0.6m ESO La Silla (Chile): **B V R I J H K Imaging**
- LX200 0.4m St. Petersbourg University (Russia): UBV (Johnson) R I (Cousin) imaging + polarimetry

Interferometry

- > VLTI AMBER+MIDI ESO Paranal (Chile) *H K spectro-interferometry* (*R* ~ 1500) + *N* spectro-interferometry (R ~ 30)
- CHARA CLIMB MWO (California) H K interferometry

4. Our previous results

Data collected by EXORCISM will allow us to replicate in a systematic and more detailed fashion the investigations performed by our group during the last few years on some EXor objects, here summarized.

outburst (quiescence) EXors are all bluer (redder).

 \Rightarrow typical variations tend not to follow the extinction vector, so other effects have a role (e.g. disk stratification temperature).

Low resolution (R ~ 250) spectroscopic monitoring of PV Cep in the NIR (0.8 - 2.5µm).

EXors spectra show a wide variety of emission features dominated by HI recombination lines.

presence of features and continuum excess seem to be correlated.

 \Rightarrow correlation: emission lines are generated by some mechanism strongly related to the accretion onto the central source

Flux and EW of Paß in PV Cep: variations seems to be anti-correlated (black points).

 \Rightarrow anti-correlation: increase of J continuum is larger (i.e. faster) than increase of line flux. Since EW is basically unaffected by extinction, varying extinction effects are ruled out.

5. Light curves of the old (red), new (green) and candidates (blue) for EXors

